注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

PostgreSQL 中文网

 
 
 

日志

 
 

PostgreSQL-XC:分片表两表关联性能测试  

2015-10-21 08:53:01|  分类: Postgres-XC |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
        PostgreSQL-XC 主要特性在于它的分片扩展功能,之前博客介绍过 PostgreSQL-XC 的复制表和分片表模式,这篇博客选取了业务场景的一条两表关联 SQL, 分别测试在复制表模式和分片表模式下的性能。
    
--测试环境
硬件环境:3台虚拟机
软件版本:Postgres-XC 1.2

--PGXC 环境

PostgreSQL-XC: 分片表两表关联性能测试 - francs - PostgreSQL DBA
 备注:两个协调节点,两个数据节点。

--业务场景 SQL

 select a.* from tbl_operate a
  join tbl_info b on a.applyid = b.id
 where a.syskey = 'BOSS'
   and a.operationid = '7'
   and a.targetid = 'zhuhua1'
   and (a.state in ('DataSaved', 'DataProc') or
       b.state in ('MainBillDeptAdminApprove', 'MainBillDeptApprove') or
       a.applyid = '8ace4a9e506c7af101508354dddd4d95');

备注:此条 SQL 为业务场景中的一条 SQL,其中 tbl_operate 记录数 1534437, tbl_info 表记录数 1699246, 目前采用的是复制表模式,两张表的 id 为主键。 注意关联字段为 a.applyid = b.id
       
--场景一:tbl_operate: 复制表   tbl_info: 复制表 

                                                      QUERY PLAN                                                      
----------------------------------------------------------------------------------------------------------------------
 Data Node Scan on "__REMOTE_FQS_QUERY__"  (cost=0.00..0.00 rows=0 width=0) (actual time=3.314..3.331 rows=3 loops=1)
   Node/s: datanode2
 Total runtime: 3.376 ms
(3 rows)

备注:两张表都是复制表模式下,执行时间为  3.376 ms。

--将两张表修改成分片表

alter table tbl_operate distribute by hash(id);
alter table tbl_info distribute by hash(id);

备注: 此条命令会涉及到数据节点数据重分布,会锁表,命令执行过程中 coor 节点上先是有个 copy 进程,之后有个 REINDEX 进程,或许这是 PostgreSQL-XC 修改表分片方式的内部过程。

--场景二 两表都 hash(id) 分片                                                    

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 Hash Join  (cost=0.01..0.07 rows=1 width=4670) (actual time=31.442..769.754 rows=3 loops=1)
   Hash Cond: ((b.id)::text = (a.applyid)::text)
   Join Filter: (((a.state)::text = ANY ('{DataSaved,DataProc}'::text[])) OR ((b.state)::text = ANY ('{MainBillDeptAdminApprove,MainBillDeptApprove}'::text[])) OR ((a.applyid)::text = '8ace4a9e506c7af101508354dddd4d95'::text))
   Rows Removed by Join Filter: 25
   ->  Data Node Scan on tbl_info "_REMOTE_TABLE_QUERY_"  (cost=0.00..0.00 rows=1000 width=208) (actual time=0.573..484.255 rows=337473 loops=1)
         Node/s: datanode2, datanode3
   ->  Hash  (cost=0.00..0.00 rows=1000 width=4670) (actual time=2.590..2.590 rows=28 loops=1)
         Buckets: 1024  Batches: 8  Memory Usage: 3kB
         ->  Data Node Scan on tbl_operate "_REMOTE_TABLE_QUERY__1"  (cost=0.00..0.00 rows=1000 width=4670) (actual time=1.626..1.850 rows=28 loops=1)
               Node/s: datanode2, datanode3
 Total runtime: 776.020 ms

(11 rows)
备注:将两张表都改成 HASH 分片后,执行时间需要 776.020 ms,效率降低 230 倍左右,执行计划也复杂得多。

--场景三  tbl_operate: 复制表   tbl_info: hash(id)  

                                                      QUERY PLAN                                                      
----------------------------------------------------------------------------------------------------------------------
 Data Node Scan on "__REMOTE_FQS_QUERY__"  (cost=0.00..0.00 rows=0 width=0) (actual time=3.303..5.061 rows=3 loops=1)
   Node/s: datanode2, datanode3
 Total runtime: 5.106 ms
(3 rows)

备注:执行时间 5.106 ms。

--场景四 tbl_operate: hash(id)   tbl_info: 复制表 

                                                      QUERY PLAN                                                      
----------------------------------------------------------------------------------------------------------------------
 Data Node Scan on "__REMOTE_FQS_QUERY__"  (cost=0.00..0.00 rows=0 width=0) (actual time=3.065..3.218 rows=3 loops=1)
   Node/s: datanode2, datanode3
 Total runtime: 3.263 ms
(3 rows)

备注:执行时间 3.263 ms,之前的业务场景 SQL 关联字段有一个是非分区键,如果关联字段都是分片字段,情况如何呢?接着测试。

--创建测试表

create table t1(id int4,name character varying(32),create_time timestamp(0) without time zone default clock_timestamp() ) distribute by hash(name);
create unique index idx_t1_name on t1 using btree(name);
insert into t1(id,name) select n,n||'_a' from generate_series(1,100000) n;

create table t2 as select name from t1;
create unique index idx_t2_name on t2 using btree(name);
alter table t2 add column flag boolean default 't';


--分区键关联SQL

select t1.id,t1.create_time,t2.name,t2.flag
from t1,t2
where t1.name=t2.name and t1.name='1_a';

备注: 关联字段 name 分别是 t1,t2 表的分片字段。

--分片表执行计划

francs=> explain analyze select t1.id,t1.create_time,t2.name,t2.flag
from t1,t2
where t1.name=t2.name and t1.name='2_a';
                                                      QUERY PLAN                                                      
----------------------------------------------------------------------------------------------------------------------
 Data Node Scan on "__REMOTE_FQS_QUERY__"  (cost=0.00..0.00 rows=0 width=0) (actual time=1.243..1.244 rows=1 loops=1)
   Node/s: datanode2, datanode3
 Total runtime: 1.293 ms
(3 rows)

备注:执行时间 1.293 ms,根据执行计划可以看到扫描了两个数据节点。

--修改成复制表

alter table t1 distribute by replication;
alter table t2 distribute by replication;



--复制表执行计划

francs=> explain analyze select t1.id,t1.create_time,t2.name,t2.flag
from t1,t2
where t1.name=t2.name and t1.name='2_a';
                                                      QUERY PLAN                                                      
----------------------------------------------------------------------------------------------------------------------
 Data Node Scan on "__REMOTE_FQS_QUERY__"  (cost=0.00..0.00 rows=0 width=0) (actual time=0.909..0.910 rows=1 loops=1)
   Node/s: datanode2
 Total runtime: 0.941 ms
(3 rows)

备注:执行时间 0.941 ms,公扫描 datanode2 节点,性能比分片情况稍降低。

--总结
   PostgreSQL-XC 环境下,两表关联的业务场景,如果关联字段正好是两表的分片字段,性能会比复制表稍降低,如果关联字段不是分片字段,性能会比复制表大辐度降低, 分片表的使用场景需谨慎。
   
--参考
  评论这张
 
阅读(536)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2016